order or at different rates. However, the induced exchange was reproducible when conditions were held constant so we were able to correct for it using the equation

```
\% exchange \(=\)
    \(\frac{\% \text { exchange (measured) }-\% \text { exchange (induced) }}{100-\% \text { exchange (induced) }}\)
```

(100)

The corrected values (always three or more excluding the value at zero time) obeyed the exponential exchange law. ${ }^{3,4}$ The half-times for the exchange rates are summarized in Table I. As expected the exchange rate is not dependent on the method of separation when proper account is taken of the induced exchange.

Table I
Tl(I)-Tl(III) Exchange Rates $0.0244 \mathrm{f} . \mathrm{Tl}(\mathrm{I}), 0.0244 \mathrm{f} . \mathrm{Tl}(\mathrm{III})$

Acid	Temperature	Method of separation	Exchange, half-time hr.
1.0 f. HNO_{3}	ca. $25^{\circ} \mathrm{C}$.	Bromide	2.5 ± 0.2
$1.5 \mathrm{f}$.	$24.8=0.2^{\circ}$	Bromide	1.8 ± 0.
$1.5 \mathrm{f}. \mathrm{HNO}_{3}$	$24.8 \pm 0.2^{\circ}$	Hydroxide	1.6 ± 0.2
$1.5 \mathrm{f}. \mathrm{HClO}_{4}$	$24.8=0.2^{\circ}$	Hydroxide	36 ± 4
1.5 f. HClO_{4}	$24.8=0.2^{\circ}$	Bromide	35 ± 4
1.5 f. HClO_{4}	$24.8 \pm 0.2^{\circ}$	Bromide	33 ± 4
2.5 f. HClO_{4}	$24.8 \pm 0.2^{\circ}$	Bromide	45 ± 4
3.5 f. HClO_{4}	$24.8=0.2^{\circ}$	Bromide	67 ± 5

We are extending this work to determine the effect of temperature, ionic strength, and concentrations of the reactants on the exchange rate.
(3) H. A. C. McKay, Nature, 142, 997 (1938).
(4) R. B. Duffield and M. Calvin, This Journal, 68, 557 (1946).

Department of Chemistry
Washington University
St. Louis, Missouri
Received December 10, 1947

the structure of the decaborane MOLECULE

Sir:

We are studying the structure of crystalline decaborane, $\mathrm{B}_{10} \mathrm{H}_{14}$, by single crystal X-ray diffraction methods. We have established the approximate positions of the ten boron atoms and four of the hydrogen atoms, and have assigned probable positions to the remaining ten hydrogen atoms. (Hydrogen atoms are well resolved in fourier sections.)

The $\mathrm{B}_{10} \mathrm{H}_{14}$ molecule has the symmetry $\mathrm{C}_{2 v}$ mm 2 . The bond distances are as follows (see figure): $\mathrm{B}_{1}-\mathrm{B}_{1}{ }^{\prime}, \mathrm{B}_{1}-\mathrm{B}_{4}, \mathrm{~B}_{2}-\mathrm{B}_{3}, \mathrm{~B}_{2}-\mathrm{B}_{4}, \mathrm{~B}_{8}-\mathrm{B}_{4}$, are all $1.74 \pm 0.04 \mathrm{kX} ; \mathrm{B}_{1}-\mathrm{B}_{2}$ and $\mathrm{B}_{4}-\mathrm{B}_{4}{ }^{\prime}$ are $1.96 \pm$ $0.04 \mathrm{kX} ; \mathrm{B}_{4}-\mathrm{H}_{4}$ is $1.34 \pm 0.04 \mathrm{kX},{ }^{1}$ and all other $\mathrm{B}-\mathrm{H}$ distances are assumed the same, except $\mathrm{B}_{4}-$ H_{6} which is assumed to be $1.54 \pm 0.04 \mathrm{kX}$. ($\mathrm{B}_{6}-$ $\mathrm{B}_{4}{ }^{\prime \prime \prime}$ and $\mathrm{B}_{4}{ }^{\prime}-\mathrm{B}_{4}{ }^{\prime \prime}$ are $2.76 \pm 0.04 \mathrm{kX}$ and are not bond distances.) Each hydrogen atom, except H_{6} and $\mathrm{H}_{6}{ }^{\prime}$ is bound to a single boron atom; H_{6} and
(1) $H_{4}, H_{4}{ }^{\prime}, H_{4}{ }^{\prime \prime}$ and $H_{d^{\prime \prime}}$ ' were located on an electron density map; the positions of the other hydrogen atoma are aspumed.
$\mathrm{H}_{6}{ }^{\prime}$ are each bound to two boron atoms. Each boron atom has three boron neighbors at $1.74 \pm$ 0.04 kX and one hydrogen neighbor at $1.34 \pm$ 0.04 kX . In addition, $\mathrm{B}_{4}, \mathrm{~B}_{4}{ }^{\prime}, \mathrm{B}_{4}{ }^{\prime \prime}$ and $\mathrm{B}_{4}{ }^{\prime \prime \prime}$ each has a boron neighbor at $1.96 \pm 0.04 \mathrm{kX}$ and another hydrogen neighbor at $1.54 \pm 0.04 \mathrm{kX} ; \mathrm{B}_{1}$, $\mathrm{B}_{1}^{\prime}, \mathrm{B}_{2}, \mathrm{~B}_{2}{ }^{\prime}$, each has two boron neighbors at 1.96 $\pm 0.04 \mathrm{kX} ; B_{3}$ and $B_{3}{ }^{\prime}$, each has another hydrogen neighbor at $1.34 \pm 0.04 \mathrm{kX}$.

Fig. 1.
Each boron atom is bound to five or six other atoms, but the bonds are not all equivalent. Inasmuch as a bond distance of 1.96 kX has about half the "bond number" 2 of a bond distance of 1.74 kX , one can say that each boron forms five bonds of bond number 0.60 . The corresponding radius, $\mathrm{R}(0.60)=0.87 \mathrm{kX}$. Consequently, $\mathrm{R}(1)$ $=0.80 \mathrm{kX}$ in agreement with Pauling. ${ }^{2}$

This structure for $\mathrm{B}_{10} \mathrm{H}_{14}$ gives excellent agreement with the observed X-ray diffraction intensities and also with the electron diffraction observations of S. Bauer. ${ }^{3}$

A detailed discussion of the determination of the structure of crystalline decaborane will be published soon.
(2) L. Pauling, Teis Journal, 69, 542 (1947).
(3) S. Bauer, ibid., 70, 115 (1948).

Research Laboratory
General Electric Company
Schenectady, New York.
John S. KASPER
C. M. Lucht

David Harker
Received January 21, 1948

HETEROGENEITY OF CRYSTALIINE BETA-LACTOGLOBULIN

Sir:
That crystalline β-lactoglobulin is not a homogeneous protein was indicated by the solubility measurements of Grönwall ${ }^{1}$ and by the electrophoretic results of Li. ${ }^{2}$ Our experiments with
(1) Grönwall, Compt. rend. tray. lab. Carlsbarg, 24, no. 8-11, 185 (1942).
(2) Li, THi Journat, 68, 2746 (1946).

